Physik für Elektrotechnik (für Studierende älterer Prüfungsordnungen)
Lecturer | Prof. Dr. Zhe Wang |
Language | German |
Module | Physik AB1 |
Course content | 1. Mechanik: Kinematik des Massepunktes, Dynamik des Massepunktes, Newtonsche Axiome, Kräfte, Dynamik und Statik des starren Körpers, Schwingungen, Mechanik der Flüssigkeiten und Gase 2. Wärmelehre: ideale Gasgleichung, reale Gase, Hauptsätze der Wärmelehre 3. Elektrostatik: Coulomb-Kraft, elektrisches Feld, elektrischer Strom 4. Magnetostatik: Lorentzkraft, Bewegung geladener Teilchen im B-Feld, Kräfte auf stromdurchflossene Leiter, Amperesches Gesetz, Biot-Savart-Gesetz, Materie im Magnetfeld 5. Elektrodynamik: Induktion, Wirbelströme, Energiedichte des Magnetfeldes, Maxwell-Gleichungen, elektromagnetische Wellen, Wellengleichung, Polarisation 6. Optik: Geometrische Optik, Wellenoptik 7. Physik des 20. Jahrhunderts: Quantenphysik, Energiezustände und H-Atommodell, Plancksche Strahlung, Quantenmechanik, Atomphysik |
Moodle link | https://moodle.tu-dortmund.de/enrol/index.php?id=46373 |
Laboratory of condensed matter physics: Terahertz time-domain spectroscopy (THz-TDS)
Lecturer | Dr. Ahmed Ghalgaoui |
Language | English |
Module | PHY7237 |
Course content | Lecture 1. Introduction: optical response functions, Maxwell equations in matter 2. Charge carrier transport: 2.1. Drude model 2.2. DC conductivity 2.3. AC conductivity 3. Terahertz technology 3.1. General introduction 3.2. Generation of sub-picosecond Terahertz pulses 3.2.1. Terahertz pulse generation by photoconductive switches 3.2.2. Terahertz pulse generation in gas plasma 3.2.3. Terahertz pulse generation by optical rectification 3.3. Time-resolved detection of Terahertz pulses: Photoconducting dipole antennas and electro-optic sampling 4. Introduction to multidimensional Terahertz spectroscopy 4.1. Introduction to nonlinear optics 4.2. Liouville Pathway diagrams 4.3. Case of semiconductors 4.4. Case of liquid water 4.5. Case of magnetic materials Exercise The exercise session serves first as in depth hands-on introduction of the complex experimental setup to the students. In particular, the students will have the chance to see the different state-of the-art technique at work and how to use them to perform real experiments in the laboratory. In addition, this session will be dedicated to show to the student how to analyze the experimental data. At the end, the experimental part will allow the students to: • Understand the water vapor absorption lines in the terahertz regime using THz-TDS spectroscopy. • Measure the terahertz transmission of a Silicon substrate and find the thickness of the substrate from the time domain signals. • Determination of the complex refractive index of semiconductors (Silicon, GaAs, Germanium, ...) and liquid solution (water, isopropanol, methanol, …) |
Moodle link | https://moodle.tu-dortmund.de/enrol/index.php?id=45487 |
Ultrafast Spectroscopic Methods in Solid State Physics
Lecturer | Dr. Sergey Kovalev |
Language | English |
Module | PHY7236 |
Course content | Excitation techniques: generation of femtosecond and attosecond laser pulses, ultrafast laser amplifier systems, optical parametric amplifier, laser- and accelerator-based infrared and THz sources. Probing techniques: electro- and magneto-optic sampling, transient reflection or absorption spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, THz emission spectroscopy, high harmonic generation spectroscopy, time-resolved angular resolved photoemission spectroscopy, ultrafast electron diffraction spectroscopy. Examples: ultrafast magnetization dynamics, high harmonic generation, light induced spin or charge transport dynamics etc. |
Moodle link | https://moodle.tu-dortmund.de/enrol/index.php?id=45710 |